Calculating Logarithms

Logarithmic functions are the inverse of exponential functions. Look at an example. Let $f(x) = 2^x$. Since f is a 1-1 function, it has an inverse. There's no nice formula for the inverse, so we give it a name and don't worry about a formula: $f^{-1}(x) = \log_2 x$. Since f(3) = 8, then $f^{-1}(8) = 3$, or in other words, $\log_2 8 = 3$. Your big key to computing logarithms is the following relationship:

 $y = \log_a x$ if and only if $x = a^y$.

We can do a few more. Wondering what $\log_3 \frac{1}{3}$ is? Well, if $\log_3 \frac{1}{3} =?$, then $3^? = \frac{1}{3}$. The ? must be -1. Wondering what $\log_5 1$ is? if $\log_5 1 =?$, then $5^? = 1$. Therefore, $\log_5 1 = 0$. Your turn.

Find the value of each logarithm.

- $(1) \log_2 16$
- $(2) \log_5 125$
- $(3) \log_7 7$
- $(4) \log_{36} 6$
- (5) $\log_4 \frac{1}{16}$
- (6) $\log_9 9^{27}$
- (7) $\log_{\pi} \pi$
- $(8) \log_{10} 10000$

Let's make it a little trickier. Suppose we want to know what $\log_9 27$ is. If $\log_9 27 =$?, then $9^? = 27$. You probably don't immediately see how to write 27 as a power of 9, but we can still simplify further because of something 9 and 27 have in common. Note that 9 and 27 are both powers of 3, so we can rewrite this equation as $(3^2)^? = 3^3$, or $3^{2?} = 3^3$. Then 2? = 3, and $? = \frac{3}{2}$. Here are a few more examples where you'll need to get the bases of the exponential equations to match up:

(9) $\log_4 \frac{1}{8}$

- $(10) \log_4 32$
- $(11) \log_{16} 8$