Calculating Logarithms

Logarithmic functions are the inverse of exponential functions. Look at an example. Let $f(x)=2^{x}$. Since f is a 1-1 function, it has an inverse. There's no nice formula for the inverse, so we give it a name and don't worry about a formula: $f^{-1}(x)=\log _{2} x$. Since $f(3)=8$, then $f^{-1}(8)=3$, or in other words, $\log _{2} 8=3$. Your big key to computing logarithms is the following relationship:

$$
y=\log _{a} x \text { if and only if } x=a^{y} .
$$

We can do a few more. Wondering what $\log _{3} \frac{1}{3}$ is? Well, if $\log _{3} \frac{1}{3}=$?, then $3^{?}=\frac{1}{3}$. The ? must be -1 . Wondering what $\log _{5} 1$ is? if $\log _{5} 1=$?, then $5^{?}=1$. Therefore, $\log _{5} 1=0$. Your turn.

Find the value of each logarithm.
(1) $\log _{2} 16$
(2) $\log _{5} 125$
(3) $\log _{7} 7$
(4) $\log _{36} 6$
(5) $\log _{4} \frac{1}{16}$
(6) $\log _{9} 9^{27}$
(7) $\log _{\pi} \pi$
(8) $\log _{10} 10000$

Let's make it a little trickier. Suppose we want to know what $\log _{9} 27$ is. If $\log _{9} 27=$?, then $9 ?=27$. You probably don't immediately see how to write 27 as a power of 9 , but we can still simplify further because of something 9 and 27 have in common. Note that 9 and 27 are both powers of 3 , so we can rewrite this equation as $\left(3^{2}\right)^{?}=3^{3}$, or $3^{2 ?}=3^{3}$. Then $2 ?=3$, and $?=\frac{3}{2}$. Here are a few more examples where you'll need to get the bases of the exponential equations to match up:
(9) $\log _{4} \frac{1}{8}$
(10) $\log _{4} 32$
(11) $\log _{16} 8$

